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Abstract. We present the theory of the multi-α-solutions of the variational problem for the upper bounds
on the convective heat transport in a heated from below horizontal fluid layer with rigid lower boundary
and stress-free upper boundary. A sequence of upper bounds on the convective heat transport is obtained.
The highest bound Nu = 1 + (1/6)R1/3 is between the bounds Nu = 1 + 0.152R1/3 for the case of a
fluid layer with two rigid boundaries and Nu = 1 + 0.3254R1/3 for the case of a fluid layer with two
stress-free boundaries. As an additional result of the presented theory we obtain small corrections of the
boundary layer thicknesses of the optimum fields for the case of fluid layer with two rigid boundaries. These
corrections lead to systematically lower upper bounds on the convective heat transport in comparison to
the bounds obtained in [5].

PACS. 47.27.Te Convection and heat transfer – 47.27.Cn Transition to turbulence

1 Introduction

The optimum theory of the turbulence is one of the few
tools for obtaining rigorous estimates of the turbulent
quantities directly from the Navier-Stokes equations. We
do not know turbulent solutions of the Navier-Stokes equa-
tions and full numerical simulations of the turbulent flows
with very large Reynolds or Rayleigh numbers are out
of reach today. Thus the interest and research activities
in the area of the optimum theory of turbulence show
a steady increasing in the last decade. The first upper
bounds on the turbulent transport quantities were ob-
tained in 1963 when the ideas of Malkus [1,2] stimulated
Howard [3] to formulate the theory of the upper bounds on
the heat transport in a layer of fluid, heated from below.
He used a solution of the corresponding variational prob-
lem with a single wave number. Busse [4] introduced the
multi-α-solutions of the variational problem. The Howard-
Busse method has been further developed by Chan [5] who
considered intermediate sublayers between the boundary
and internal sublayers of the fields connected to the wave
numbers of the multi-α-solution of the variational prob-
lem for the upper bounds on the convective heat trans-
port in a fluid layer of infinite Prandtl number. Many
results have been obtained by the Howard-Busse
method [6–14]. and some of them have stimulated the
rapid development of the optimum theory of turbulence
in several directions. The most important direction is for-
mulation of new methods and amendments of the existing
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ones. In 1992 Doering and Constantin developed the sec-
ond method of the optimum theory of turbulence [15].
Its main idea is to decompose the velocity into a steady
background field which carries the inhomogeneous bound-
ary conditions and a homogeneous fluctuations field.
The method leads to quick estimations of the turbulent
quantities and has been applied to convection and shear
flows [16–20]. An energy-balance parameter modifica-
tion of the Doering-Constantin method was proposed by
Nicodemus, Grossmann and Holthaus [21]. Up to now this
modification has been applied for obtaining upper bounds
on the energy dissipation in turbulent shear flow and in
Couette-Ekman flow [22–25]. Another direction of the de-
velopment of the theory is connected to clarifying the re-
lations between the methods and formulations of the vari-
ational problems for the Navier-Stokes equations [26–29].
Finally the optimum theory of turbulence finds applica-
tions for new systems and new boundary conditions. For
an example the theory has been applied in the plasma
physics where upper bounds on the heat transport due to
ion-temperature gradient, on the energy dissipation in a
turbulent pinch, etc have been calculated [30–36].

In this paper we obtain upper bounds on the convective
heat transport in a heated from below horizontally infinite
fluid layer. Chan [5] developed the theory for the case of
fluid layer with two rigid boundaries. His result is that the
convective heat transport is bounded by 0.152R1/3 as the
number of the wave numbers of the multi-α-solution and
the Rayleigh number R tend to infinity together. In this
paper we discuss the case of fluid layer with rigid lower
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boundary and stress-free upper boundary and obtain a
sequence of bounds the highest of which is (1/6)R1/3.

The paper is organised as follows. In Section 2 we for-
mulate briefly the variational problem. In Section 3 we
obtain upper bounds on the convective heat transport on
the basis of the multi-α-solutions of the variational prob-
lem as well as relationships for the wave numbers and
boundary layer thicknesses of the optimum fields. In the
last section we discuss the obtained results and show how
on the their basis the bound obtained by Chan [5] for the
rigid-rigid case can be slightly but systematically lowered.
In the appendix we show that the onset of the thermal
convection in a fluid layer of infinite Prandtl number is
contained as solution of the Euler equations of the varia-
tional functional for the upper bounds on the convective
heat transport.

2 Mathematical formulation of the problem

We consider a horizontally infinite fluid layer heated from
below of thickness d with fixed temperatures T1 and T2 at
the upper and lower boundaries and denote the coefficient
of thermal expansion by γ, the kinematic viscosity by ν,
the acceleration of gravity by g and the thermal diffusiv-
ity of the fluid as κ. The characteristic parameters of the
system are the Rayleigh number: R = γ(T2−T1)gd3/(κν)
and the Prandtl number: P = ν/κ. Introducing a Carte-
sian system of coordinates with z-axis in the vertical di-
rection and using d as length scale, d2/κ as time scale
and (T2 − T1)/R as temperature scale we can write the
Navier-Stokes equations for the velocity vector u and the
heat equation for the deviation Θ from the static temper-
ature distribution in dimensionless form,

(1/P ) (∂u/∂t+ u · ∇u) = −∇p+ kΘ +∇2u (1)
∇ · u = 0 (2)

∂Θ/∂t+ u · ∇Θ = Rk · u +∇2Θ (3)

k is the vertical unit vector. Denoting the z-component of
u as w we write for the rigid boundary conditions on the
bottom of the layer: w = ∂w/∂z = Θ = 0 at z = −1/2
and for the stress-free boundary conditions on the top of
the layer: w = ∂2w/∂z2 = Θ = 0 at z = 1/2.

We shall use the averages over the the planes z = const
(denoted as q) and over the fluid layer (denoted as 〈q〉).
Denoting the horizontal size of the fluid layer as L and
the limes when L→∞ as lim we define

q = lim(1/(4L2))
∫ L

−L

∫ L

−L
dxdy q(x, y, z, t) (4)

〈q〉 = lim(1/(4L2))
∫ L

−L

∫ L

−L

∫ 1/2

−1/2

dxdydz q(x, y, z, t).

(5)

The temperature field is separated into two parts Θ =
Θ + T such that T = 0 holds. We average over the fluid
layer the two equations obtained by a multiplication of (1)

by u and by a subtraction of the horizontal average of (3)
from (3). Thus we obtain the relationships

(1/2P )d〈u · u〉/dt = 〈wT 〉 − 〈|∇u|2〉 (6)

(1/2)d〈T 2〉/dt = R〈wT 〉 − 〈|∇T |2〉 − 〈wT∂Θ/∂z〉.
(7)

We are interested in turbulent convection long after any
external parameter has been changed. We define this sit-
uation by the condition that all horizontally averaged
quantities are time independent. In this case we obtain
from the first integral of the horizontal averaged (3):
dΘ/dz = wT − 〈wT 〉. Using this relationship we obtain
the power integrals

〈wT 〉 = 〈|∇u|2〉 (8)

〈|∇T |2〉 = R〈wT 〉+ 〈wT 〉2 − 〈wT 2〉 (9)

which hold for all Prandtl numbers P . The imposition of
the infinite Prandtl number condition restricts further the
fields that satisfy the power integrals. (1) becomes linear in
the limit P → ∞ and we incorporate it as an additional
constraint into the variational problem. The pressure is
eliminated by taking the z-component of the double curl
of (1). Thus we obtain the relationship: ∇2

1T +∇4w = 0.
We take the equation of continuity as a constraint into
the variational problem by means of the general represen-
tation of a solenoidal vector field u in terms of a poloidal
and a toroidal component u = ∇×(∇×kφ)+∇×kψ where
the condition φ = ψ = 0 can be imposed without chang-
ing u. Taking the curl of (1) we see that ψ must vanish
in the limit of infinite Prandtl number. The z-component
of u is given by the poloidal field φ, w = −∇2

1φ where
∇1 = ∂2/∂x2 + ∂2/∂y2.

We write a functional for the convective heat trans-
port Nu − 1 = 〈wT 〉/R where Nu is the Nusselt num-
ber. Using (8, 9) and imposing the normalisation condition
〈wθ〉 = 1 we obtain the following variational problem:

Given Rayleigh number R find the maximum F (R) of
the variational functional

F(R,w, θ) = [1− (1/R)〈|∇θ|2〉]/〈(1− wθ)2〉 (10)

among all fields w and θ subject to the constraints 〈wθ〉 =
1 and ∇4w +∇2

1θ = 0 and the boundary conditions w =
∂w/∂z = θ = 0 at z = −1/2 and w = ∂2w/∂z2 = θ = 0
at z = 1/2.

The Euler equations for the functional (10) are

(1/RF )∇6θ +∇4
[(

1− wθ − 2λ/F
)
w
]

+ (1− wθ)∇4w = 0 (11)

∇4w +∇2
1θ = 0 (12)

−1 ≤ λ = −1/2
(
2− (1/R)〈|θ|2〉

)
≤ −1/2. (13)

We note that the Euler equations contain the solution that
describes the onset of the convection (see Appendix A).
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Fig. 1. Assumed layer structure for the case of a multi-α-
solution. Rigid line: schematic representation of w1θ1. Dashed
line: schematic representation of w2θ2. Dotted line: schematic
representation of w3θ3.

3 The multi-α-solutions

When R is large enough 2λ/F → 0 and wθ ≈ 1 almost
in the whole fluid layer. We assume also ∇6θ � RF .
Thus (11) is approximately satisfied. In order to solve (12)
we write w and θ as multi-α-solutions of Busse [4]

w =
N∑
n=1

wn(z)φn(x, y) θ =
N∑
n=1

θn(z)φn(x, y) (14)

where ∇1φn = −α2
nφn and φnφm = δnm. ∇1 = ∂2/∂x2 +

∂2/∂y2 and δnm is the Kronecker delta symbol. Thus we
obtain the system of equations

(d2/dz2 − α2
n)2wn − α2

nθn = 0. (15)

With respect to the midplane of the fluid layer we assume
two systems of layers: layers from the midplane to the
lower rigid boundary of the fluid layer and layers from the
midplane to the upper stress-free boundary of the fluid
layer (see Fig. 1). For each of the two systems of layers
we have the sublayers structure as follows. Each of the
components of wθ connected to the different wave num-
bers αn is significantly different from 0 in a confined re-
gion of the fluid layer. This region can be divided into
three subregions. Two of these three subregions are the ar-
eas of coexistence of the neighbouring modes. We assume
that wiθi and wi−1θi−1 corresponding to the ith mode and
i−1th mode coexist only in the (i−1)-boundary layer i.e.
the (i− 1)-boundary layer coincides with the ith internal
layer. Thus we have two sets of intermediate and boundary
layers. For the lower set (from the midplane of the fluid
layer to the rigid lower boundary) we introduce the coor-
dinates ξl

n = αn(z − 1/2) for the intermediate layers and
ηl
n = (αn/δl

n)(1/2 − z) for the boundary layers. For the
upper set of layers the coordinates are ξu

n = αn(1/2−z) for
the intermediate layers and ηu

n = (αn/δu
n)(1/2− z) for the

boundary layers. We define α0 = δu,l
0 = 1. Note that the

quantities δu,l
n can be considered as characteristic lengths

for the corresponding boundary layers. The internal layer

of the field wnθn coincides with the boundary layer of the
field wn−1θn−1. The two fields coexist in such a way that
wθ ≈ 1 when R→∞ i.e. we have the relationships

1− ŵn−1(ηu,l
n−1)θ̂n−1(ηu,l

n−1)

− w̃n(ηu,l
n−1)θ̃n(ηu,l

n−1) = O(R−1). (16)

Thus we ensure that 1−wθ vanishes through the fluid layer
except in the two boundary layers near the fluid bound-
aries and the denominator 〈(1 − wθ)2〉 of the variational
functional (10) is made as small as possible.

For the layers with coordinates ηu,l
n−1 we assume that

the terms containing the derivatives d2/dηu,l
n−1

2
are much

smaller than the terms containing the wave numbers αn.
Thus we obtain the solutions: wn(z) = Cnw̃n(ηu,l

n−1);
θn(z) = (1/Cn)θ̃n(ηu,l

n−1) with Cn = 1/αn. In the lay-
ers with coordinates ξu,l

n we search for solutions of the
form: wn(z) = Bnw̌n(ξu,l

n ); θn(z) = (1/Bn)θ̌n(ξu,l
n ) with

Bn = 1/αn. Using that in these layers wnθn ≈ 1 i.e.
θn = 1/wn we have to solve the equations

w̌n(d2/dξu,l
n

2 − 1)2w̌n = 1. (17)

For the upper layers we have the boundary conditions:
w̌n(0) = w̌

′′

n(0) = 0 plus the matching conditions that
w̌n(ξu

n → ∞) must match w̃n(ηu
n−1 → 0). The solution

is: w̌n = cξu
n − (ξu

n
3/(6c)) ln(1/ξu

n) with c = 0.83421. For
the lower layers the boundary conditions are: w̌n(0) =
w̌
′

n(0) = 0 and w̌n(ξl
n → ∞) must match w̃n(ηl

n−1 → 0).

The solution is: w̌n = ξl
n
2
√

ln(1/ξl
n
2).

For the upper and lower boundary layers we search
the solutions in the form wn = Au,l

n ŵn(ηu,l
n ); θn =

(1/Au,l
n )θ̂n(ηu,l

n ). In these layers the field profiles increase
sharply from 0 to their value at the bounds between the
corresponding boundary and intermediate layers. We as-
sume that in the governing equations the terms contain-
ing the highest derivatives dominate over the other terms.
Thus we obtain the simplified equations

(α4
n/δ

u,l
n

4
)Au,l

n

2
(d4ŵn/dηu,l

n

4
) = α2

nθ̂n. (18)

Matching the solutions between the corresponding bound-
ary and intermediate layers we obtain

Al
n = (1/αn)δl

n

2
√

ln(1/δl
n); Au

n = cδu
n/αn. (19)

We introduce the small parameters εun = (δu
n/c)2 and

εln = 1/(ln(1/δl
n)) and expand the solutions as power se-

ries of εu,ln

ŵn = ŵu,l
n,0 + εu,ln ŵu,l

n,1 + εu,ln
2
ŵu,l
n,2 + ... (20)

θ̂n = εu,ln θ̂u,l
n,0 + εu,ln

2
θ̂u,l
n,1 + εu,ln

3
θ̂u,l
n,2 + ... (21)

Thus we obtain the approximate solutions

ŵl
n,0 = ηl

n

2
; ŵu

n,0 = ηu
n. (22)
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Defining θ̃N+1 = 0; 〈θ̃2
1〉l = 〈θ̃2

1〉u = 1/2 we obtain for the
functional F = T/Z

T = 1− 1
R

N∑
n=1

{
α3
n

δl
n
5 ln(1/δl

n)

∫ ∞
0

dηl
n

(
dθ̂n,0
dηl
n

)2

+
α3
n

c2δu
n

3

∫ ∞
0

dηu
n

(
dθ̂n,0
dηu
n

)2

+
α4
nδ

l
n−1

αn−1

∫ ∞
0

dηl
n−1θ̃

2
n(ηl

n−1)

+
α4δu

n−1

αn−1

∫ ∞
0

dηu
n−1θ̃

2
n(ηu

n−1)

}
(23)

Z =
N∑
n=1

{
δl
N

αN

[
αN
δl
N

δl
n

αn

∫ ∞
0

dηln(1− ηl
n

2
)2θ̂n,0 − θ̃2

n+1)2

]

+
δu
N

αN

[
αN
δu
N

δu
n

αn

∫ ∞
0

dηu
n(1− ηu

nθ̂n,0 − θ̃2
n+1)2

]}
.

(24)

The theory of the 1-α-solution of the variational problem
has been presented in [37]. Using the obtained results for
the wave number, boundary layer thicknesses and upper
bound on the convective heat transport connected to the
optimum fields

α1 = A∗5(R/13)1/4

A∗ = [1/(1 + 0.51716R−1/40(lnR)3/20)]1/20 (25)

F1 = 0.3404A∗26R3/10(lnR)1/5 (26)

δ1l = 0.38394A∗−1R−1/20(lnR)−1/5

δ1u = 1.0478δ1l(R − 13α4)/(12α4) (27)

we can construct the quantities

Q1 = α3
1/(δ

l
1

5
ln(1/δl

1)), Q2 = α3
1/(cδ

u
1

3). (28)

Substituting the expressions for α1,δu,l
1 we obtain that

when the Rayleigh number is large enough Q1 � Q2 as
well as δ1l � δ1u. Thus as a first approximation we can
assume that the terms connected to the upper boundary
layers except for the term connected with the 0th bound-
ary layer are much smaller than the terms connected with
the correspondent lower boundary layers. We assume that

α3
n/(δ

l
n

5
ln(1/δl

n)) ∝ R; α4
nδ

l
n−1/αn−1 ∝ R. (29)

Solving (29) we obtain

αn = bn

n−1∏
k=1

(ln(1/δl
k))10k/2×10nR(1/6)(2−5/10n) (30)

δl
n

2×10n

(ln(1/δl
n))4×10n−1

n−1∏
k=1

(ln(1/δl
k))−6×10k−1

= R−1

(31)

where we have introduced the set of parameters bn in or-
der to convert the proportionalities (29) to equalities. Us-
ing (30, 31) we can write the functional F in the form

FN = KN
αN
δl
N

b−1
N (32)

where KN = T1/Z1 and

T1 = 1−
N∑
n=1

b3n

∫ ∞
0

dηl
n

(
dθ̂n,0
dηl
n

)2

+ b4nb
−1
n−1

∫ ∞
0

dηl
n−1θ̃

2
n(ηl

n−1) +
α4

1

α0R

∫ ∞
0

dηu
0 θ̃

2
1(ηu

0 )

(33)

Z1 =
N∑
n=1

b−1
N

αN
δl
N

δl
n

αn

∫ ∞
0

dηl
n(1− ηl

n

2
θ̂n,0 − θ̃2

n+1)2. (34)

Varying KN with respect to the functions θ̂n,0 and θ̃n+1

we obtain the equations

b3n
d2θ̂n,0

dηl
n
2 +KNb

−1
N

δl
n

αn

αN
δl
N

(1− ηl
n

2
θ̂n,0 − θ̃2

n+1)ηl
n

2
= 0,

(35)

b4n+1b
−1
n θ̃n+1

− 2KNb
−1
N

δl
n

αn

αN
δl
N

(1− ηl
n

2
θ̂n,0 − θ̃2

n+1)θ̃n+1 = 0, (36)

analogous to the equations obtained in [5]. Solving (35, 36)
we obtain

M = K
6/5
N (σ + τ)

= (1− b41 − 6β∗
N−1∑
n=1

(b10
n+1/bn)1/3)/b−1/3

N (37)

where σ =
∫∞

0 dη(1− η2f); τ =
∫∞

0 dη(df/dη)2.

β∗ = (1/6)
∫ ∞

0

[(1/2)5/6(dg/dη)2 + (1/2)−1/6(1− η2g)]

(38)

is two times smaller as β = 0.4367 defined in [5] and σ +
τ = 1.110646. The coefficients bn are determined from the
equations ∂M/∂bn = 0 and solving them we obtain

b1 = [(3/4)/(10N − 1/4)]1/4 (39)

bn+1 = 10(1/3)[n−(10/9)(1−10−n)]

×(2/β∗)(1/3)(1−10−n)b
(1/3)(4−10−n)
1 . (40)
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In order to obtain the FN as a function of the Rayleigh
number we must solve (31) with respect to δl

n. As a result
we obtain the solution

δl
n = {R−1

n−1∏
k=1

[ln(1/δl
k)]6×10k−1}1/(2×10n)

×{[2×10n/ ln{R
n−1∏
k=1

[ln(1/δl
k)]−6×10k−1}][1/(1−Ωn)]}1/5

(41)

with

Ωn = {2× 10n/{5 ln{R
n−1∏
k=1

[ln(1/δl
k)]−6×10k−1}}}

× ln{2× 10n/{ln{R
n−1∏
k=1

[ln(1/δl
k)]−6×10k−1}}}. (42)

Substituting (30–42) into (32) we obtain quite compli-
cated expression for F . In order to evaluate FN when
N →∞ we shall neglect all of the quantities Ωn assuming
that they are much smaller than 1. We note that some of
the functions Ωn decrease relatively slowly with increas-
ing Rayleigh number. Thus the last assumption affects the
boundary layer thicknesses and will result in a higher esti-
mation on the correspondent upper bound on the convec-
tive heat transport (for discussion see the next section).
For FN we obtain

FN = [1/(2(σ + τ)]6/5{10(1/3)[N−1−(10/9)(1−1/10N−1]

×(2/β∗)(1/3)(1−1/10N−1)b
(1/3)(4−1/10N−1)
1

2/5

×(120b4110N−2)6/5}(1/2)(2/9)(1−10−N)

×10−(1/405)[10(9N−1)]101−N

×R(1/3)(1−10−N)(lnR)(2/9)(1−10−N ). (43)

If N is very large we can treat µ = 10−N as a continuous
variable. Then we find the optimal N from the require-
ment ∂(lnFN )/∂µ = 0. Thus N = (1/ ln(10))[ln(3/2) +
ln lnR] and the value of FN when N →∞ is

F ∝ [1/(2(σ + τ))]6/5(3/(2β∗))2/15(9/10)6/5

×10−38/135(1/3)2/9R1/3

≈ (1/6)R1/3. (44)

Figure 2 shows several upper bounds connected to the
multi-α-solutions of the variational problem. The appli-
cation area of the bound obtained by the correspondent
multi-α-solution is this one in which the upper bound is
larger than the upper bounds obtained by the other multi-
α-solutions. Thus the 1-α-solution gives the upper bound
on the convective heat transport up to R = 2.272× 1012

and the region, in which the bound connected to the 2-α-
solution of the variational problem is also upper bound on
the convective heat transport, is between R = 2.272×1012

and 7.893 × 1073. For comparison in the case of a fluid
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Fig. 2. Nusselt number connected to the multi-α-solutions of
the variational problem as a function of the Rayleigh number.
Solid line: Nu(R) for the 1-α-solution. Dotted line: Nu(R) for
the 2-α-solution. Dashed line: Nu(R) connected to the 3-α-
solution of the variational problem.
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Fig. 3. Several quantities connected to the two-α-solution of
the variational problem for the upper bound on the convec-
tive heat transport in a fluid layer with two rigid boundaries.
Solid line: Ω2(R). Dashed line: The upper bound on the Nus-
selt number obtained by including Ω2 into the expression for
the correspondent boundary layer thickness. Dotted line: The
difference between the correspondent bound on the Nusselt
number obtained in [5] and the bound obtained in this paper
(which is presented by the dashed line in this figure).

layer with rigid boundaries the bound obtained by the 1-
α-solution is upper bound on the heat transport up to
R = 8.945×109 and the region where the bound obtained
by the 2-α-solution is upper bound on the convective heat
transport is betweenR = 8.945×109 andR = 7.866×1076.
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4 Discussion

In order to obtain the simplified expression (43) for FN
we have neglected the terms Ωn in the expressions for
the boundary layer thicknesses of the optimum fields con-
nected to the multi-α-solution of the variational problem.
This we have obtained the result Nu∞ = 1 + (1/6)R1/3

for the case of a fluid layer with rigid lower and stress-
free upper boundary. Using the same approximation we
can obtain the result Nu∞ = 1 + 0.152R1/3 for the case
of a fluid layer with two rigid boundaries. The above two
results must be treated as an upper bound on the up-
per bound on the convective heat transport for the cor-
responding case. Let us discuss for an example the case
of fluid layer with two rigid boundaries. Taking Ωn into
account we obtain for the case of the 2-α-solution of the
variational problem

α1 = (R/133)1/4;

α2 = (2/β)3/10(1/133)13/40[ln(1/δ1)]1/20R13/40; (45)

δ1 = (13D4/244)1/20(1/5)−1/5R−1/20(lnR)−1/5 (46)

with D = 2.2212

δ2 = {R[ln(1/δ1)]−6}−1/200{200/{ln{R[ln(1/δ1)]−6}{1/{1
−(40 ln(200/(ln(R[ln(1/δ1)]-6))))/(ln(R[ln(1/δ1)]-6))}}}}

(47)

F2 = (1/133)13/100(2/β)3/25[60/(133(σ + τ))]6/5

× [ln(1/δ1)]1/50R33/100/{200/{ln{R[ln(1/δ1)]−6}{1/{1−
(40 ln(200/(ln(R[ln(1/δ1)]−6))))/(ln(R[ln(1/δ1)]−6))}}}}.

(48)

For the case of the three-α-solution we obtain the rela-
tionships

α1 = (R/1333)1/4;

α2 = (2/β)3/10(1/1333)13/40[ln(1/δ1)]1/20R13/40 (49)

α3 = 103/10(2/β)33/100(1/1333)13/40[ln(1/δ1)]1/200

× [ln(1/δ2)]1/20R133/400 (50)

δ3 = {R[ln(1/δ1)]−6[ln(1− δ2)]−60}−1/2000

× {2000/{ln{R[ln(1− δ1)]−6[ln(1− δ2)]−60}
× {1/{1− {400/{ln{R[ln(1− δ1)]−6[ln(1/δ2)]−60}}
× ln{2000/ ln{R[ln(1/δ1)]−6[ln(1/δ2)]−60}}}}}}}−1/5

(51)

F3 = {[ln(1/δ1)]1/200[ln(1/δ2)]1/20R133/400103/25

× (1/1333)133/1000(2/β)33/200[600/(1333(σ+ τ))]6/5}/δ3.
(52)

Figure 3 shows the effect of the incorporating of Ωn into
the expressions for δn. As a result the thicknesses of the
boundary layers of the optimum fields increase which leads
to lowering of the upper bound on the convective heat
transport and to a change in the behaviour of some of the
wave numbers αn of the multi-α-solution with increas-
ing Rayleigh number. In the region of Rayleigh numbers
for which the corresponding multi-α-solution of the vari-
ational problem gives the upper bound on the convective
heat transport this effect is a finite one and moreover
we have an accumulation of the corrections of the up-
per bounds on the heat transport. This is because of the
incorporation of the correction, connected to the (n−1)-α-
solution into the correction connected to the n-α-solution
of the variational problem. This incorporation is caused
by the simultaneous correction of the thicknesses of the
boundary layers of the optimum fields.

Appendix A: The variational functional
and the onset of the convection

We can write the variational problem as follows: Given µ
find the minimum R(µ) of the variational functional:

R(w, θ, µ) =
〈|∇θ|2〉
〈wθ〉 + µ

〈(wθ − 〈wθ〉)2〉
〈wθ〉2 (A.1)

among all fields w, θ that satisfy the condition ∇4w +
∇2

1θ = 0 in addition to the rigid lower boundary conditions
and stress-free upper boundary conditions.

It can be shown that this functional and the func-
tional (10) are equivalent. We can associate µ with the
convective heat transport and R with the Rayleigh num-
ber. Thus we can expect that when µ = 0 the functional
will contain the solution of the Euler equations and the
Rayleigh and wave numbers corresponding to the onset
of the convection. Below we show this for the cases of
fluid layer with stress-free boundaries, with rigid bound-
aries and with rigid lower boundary and stress-free upper
boundary.

The Euler equations corresponding to the func-
tional (A.1) for the case µ = 0 are

∇6θ +R∇4w = 0 (A.2)

∇4w +∇2
1θ = 0. (A.3)

Assuming that the solution is of the kind of 1-α-solution of
Busse: w = w1(z)φ1(x, y); θ = θ1(z)φ1(x, y) with ∇1φ1 =
−α2

1φ1 and φ1φ1 = 1 we obtain(
d2

dz2
− α2

1

)2

w1 = α2
1θ (A.4)(

d2

dz2
− α2

1

)3

θ1 +R

(
d2

dz2
− α2

1

)2

w1 = 0. (A.5)

Introducing the solutions for w1, θ1 into above equations
we obtain a relationship between the Rayleigh number and
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the wave number of the 1-α-solution. Through a minimi-
sation we then obtain the values of the Rayleigh number
and wave number for the onset of the convection

For the case of a fluid layer with two stress-free bound-
aries we can perform all calculations analytically. The
corresponding solution for w1 is w1 = a sin[π(z + 1/2)]
where a is the amplitude. From (A.4, A.5) we obtain
R = (α2 + π2)3/α2 and the optimisation with respect
to α leads us to the onset values αcr = 2.22144 and
Rcr = 657.51136. For the rigid-stress-free case the solu-
tion for w1 is [38]:

w1 = sin (7.137877z)
+0.01153032 sinh (9.110891z) cos(3.789330z)
+0.00345645 cosh (9.110819z) sin (3.789330z)

which leads to the onset values αcr = 2.6825 and Rcr =
1100.65. The analogous calculations for the rigid-rigid case
lead to αcr = 3.117 and Rcr = 1707.65.
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